

In vitro human airway epithelial platform for the development of novel anti-bacterial drugs

Laureen Jaupart, Christine Caul-Futy, Mendy Bouveret, Ophelie Verbeke, Carole Bertinetti, Mireille Caul-Futy, Samuel Constant Epithelix Sàrl, 18 chemin des Aulx, 1228 plan-les-Ouates, Geneva, Switzerland

Respiratory bacterial infections cause frequently mild to severe diseases worldwide. To develop new anti-bacterial drugs more predictive research tools are needed. We report herein the use of 3D epithelia made of primary human airway epithelial cells, MucilAirTM, for anti-bacterial drug screening. As proof-of-concept, typical disease-causing bacteria is used to infect human nasal epithelia reconstituted from a pool of 14 donors.

Tested bacteria

1000

Pseudomonas aeruginosa (Pa), Staphylococcus aureus (Sa), Acinetobacter baumannii (Ab), Streptococcus pneumoniae (Sp), Haemophilus influenzae (Hi)

Inhibitor of bacterial growth used Meropenem (Mero), Amoxicillin (Amox) Cytomix for inflammation, Triton X-100 for cytotoxicity **Positive controls** Vehicle (VH) **Negative controls**

 \geq

treated with alveolar macrophages.

B. Mucin secretion 24 hours post-

infection. Vehicle control was

compared to infected condition and

infected condition treated with

(mean±SEM). Student's t test

(Prism 6.0 GraphPad, *p<0.05,

p<0.01, *p<0.001, ****p<0.0001,

macrophages.

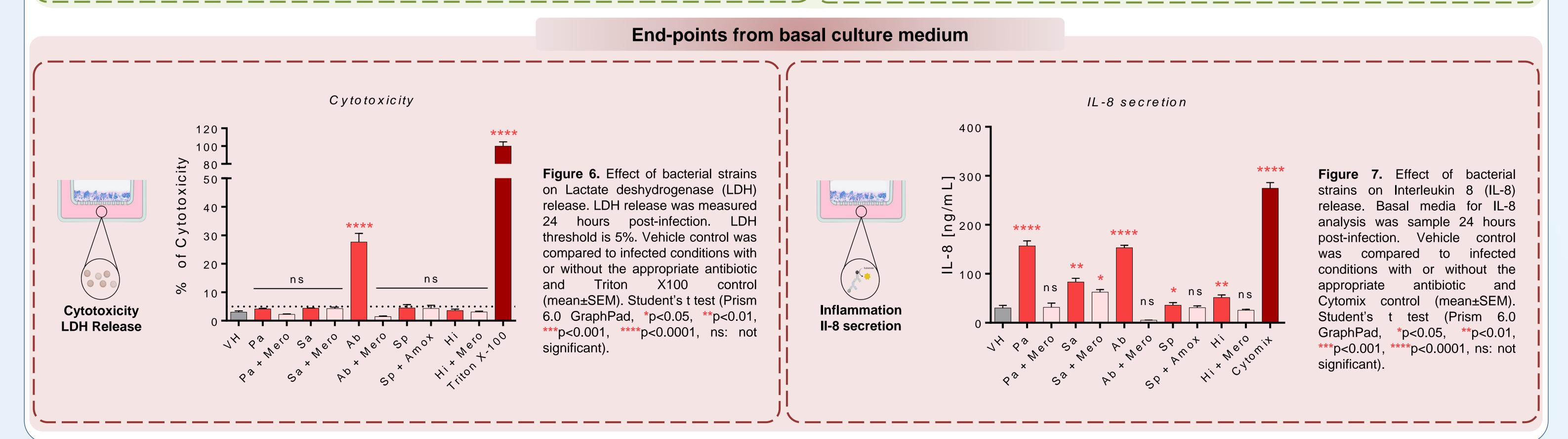
alveolar

ns: not significant).

appropriate antibiotic (mean±SEM).

Student's t test (Prism 6.0 GraphPad,

***p<0.001,


50.000 primary

alveolar macrophages

**p<0.01,

****p<0.0001, ns: not significant).

*p<0.05,

CONCLUSION

Fingerprint of bacterial-specific effects on standardized in vitro nasal epithelium (MucilAirTM Pool-Nasal) are herein reported. Antibiotics like Meropenem inhibits the bacterial growth and abrogates its side effects. Similarly, macrophages in co-culture decrease the growth of Sp and prevent the bacterium-induced increase of mucin secretion. Additionnal end-point can be used such as mucociliary clearance (MCC), intratissular bacterial localisation, etc... These results suggest that MucilAirTM is a reliable tool for anti-bacterial drug development.