

Fingerprint of the most prevalent respiratory viral strains on in vitro primary human nasal epithelium

Guy Barbin, Rosy Bonfante, Bernadett Boda, Nicolas Simonnet, Song Huang, Samuel Constant Epithelix Sàrl, 18 chemin des Aulx, 1228 plan-les-Ouates, Geneva, Switzerland

Acute respiratory infections are a leading cause of death worldwide, with an estimated 20% of total death in younger than five years old children. MucilAir™ is a fully differentiated 3D nasal in vitro model, reconstituted from human primary cells, that recapitulates key functions of the respiratory epithelium. Here, we assessed the efficacy of antiviral drugs on influenza A (H1N1), respiratory syncytial virus (RSV-A), rhinoviruses (RV-A16), human metapneumovirus (hMPV) and para-influenza virus (PIV3) using human nasal epithelia reconstituted from a pool of 14 donors.

Tested antivirals

Baloxavir marboxil (Balo), Oseltamivir, Nirmatrelvir,

Positive controls Cytomix (Cyto) for inflammation, Triton for cytotoxicity

And

mucociliary

clearance

(Image J)

(+) Infected

24

Viral inoculation on the apical

side to mimic airborne infection.

lours post-

infection

(hpi)

Apical wash

for kinetics of

apical

replication

(RTqPCR)

Molnupiravir, Ribavirin, Rupintrivir

Negative controls Mock infection (Mock), Non-treated (NT)

(-) Non-infected

96

1407

Cytotoxicity

Readouts

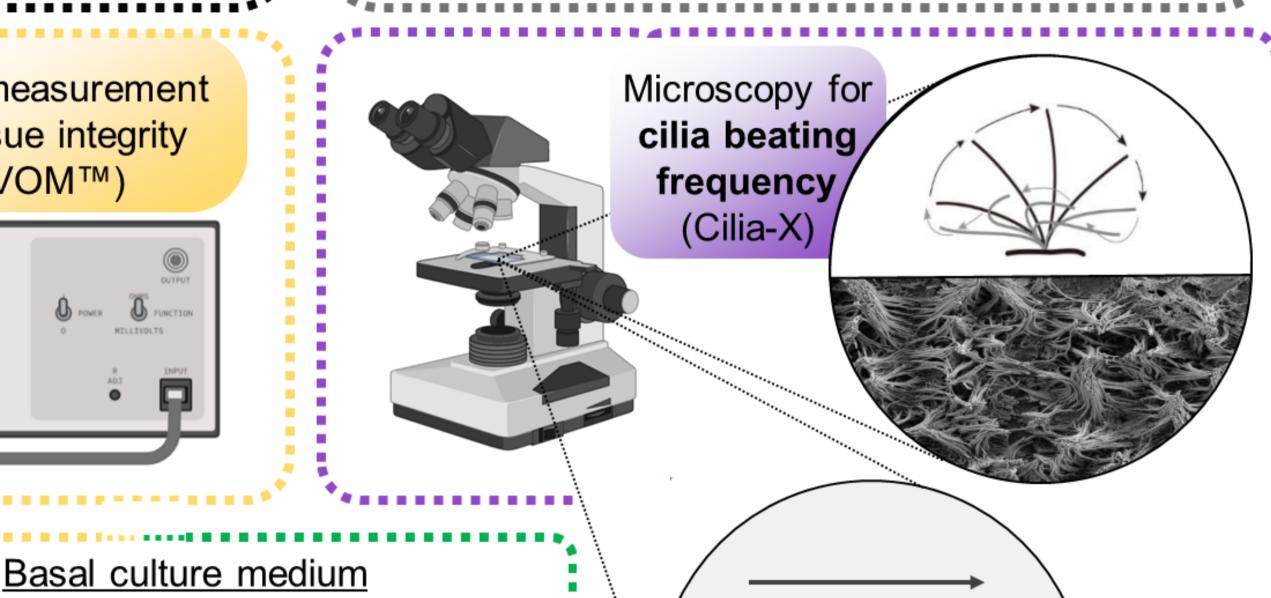
Apical replication

Basal secretion

TEER

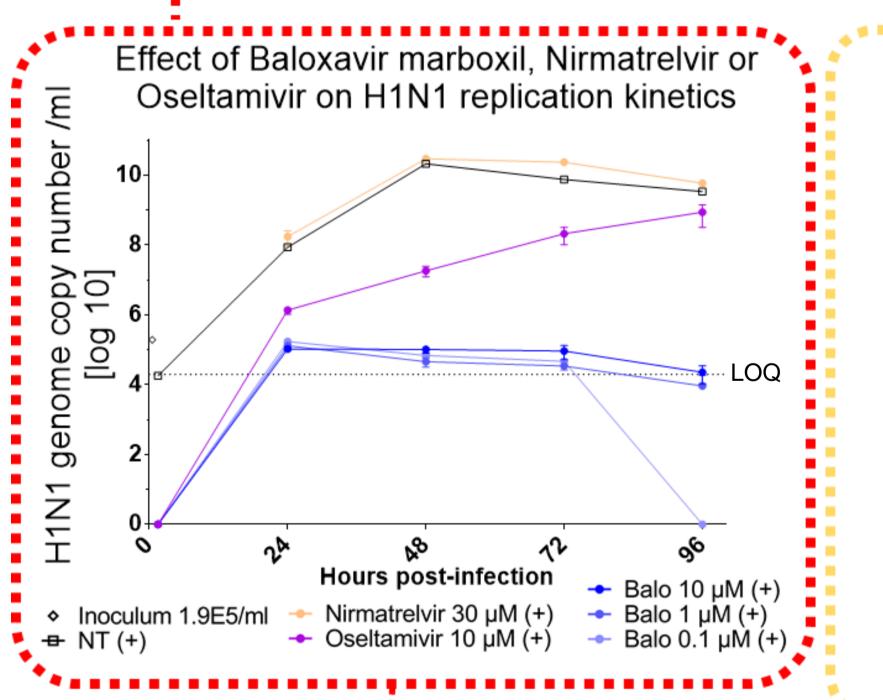
Cytotoxicity

CBF/MCC


TEER measurement

for tissue integrity

(EVOM™)


Additional readouts are possible

- Tissue lysis for gene expression.
- TCID50 from apical wash (infectivity).
- Tissue fixation for IF/TEM/SEM.
- Cytokines and chemokines from apical wash.
- Permeability / uptake.
- Ion channels activity (Ussing chamber).

(LDH release) Fully differentiated epithelium from primary human cells cultured at the air-liquid interface (ALI). Test drugs are added in the culture medium concomitantly with

viral infection.

H1N1 replicated efficiently in MucilAir™. Baloxavir marboxil (0.1 μM) reduced H1N1 apical replication more efficiently than Oseltamivir (30 µM). Nirmatrelvir (30 μM) had no effect.

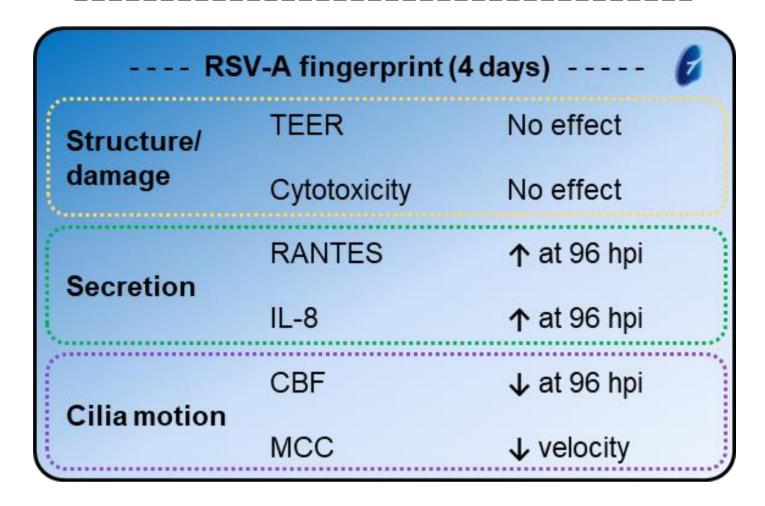
Conclusion

H1N1 induces a decrease of TEER associated with a slight cytotoxicity, indicating transient loss of barrier function. Viral infection increases IL-8 and RANTES basal secretion and completely abolishes cilia motion. Baloxavir marboxil (1 µM) is the most efficient to reduce H1N1 replication and associated deregulations.

CBF 96 hpi at 34°C on TEER at 24-48-72-96 hpi RANTES basal secretion at 48-96 hpi Effect of H1N1 infection active surface 96 hpi at 34°C LDH release at 48 and 96 hpi 24 hpi

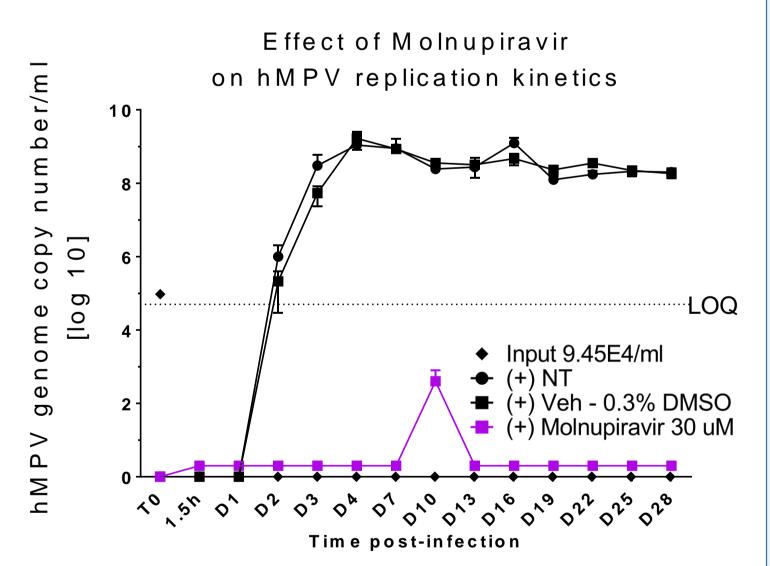
Cytokines and

chemokines secretion


(ELISA/multiplex)

H1N1 fingerprint (4 days)			
Structural integrity	TEER	↓ transient at 72 hpi	
	Cytotoxicity	5-10%	
Secretion	RANTES	↑ at 48 and 96 hpi	
	IL-8	↑ at 48 and 96 hpi	
Cilia motion	CBF	Loss of motion	
	MCC	Loss of function	

2. Fingerprints of RV-A16 or RSV-A infections


RV-	RV-A16 fingerprint (4 days) 💪				
Structure/	TEER	No effect			
damage	Cytotoxicity	No effect			
Secretion	RANTES	↑ at 96 hpi			
Secretion	IL-8	↑ at 96 hpi			
· · · · · · · · · · · · · · · · · · ·	CBF	No effect			
Cilia motion	MCC	No effect (↓ ns)			

RV-A16 replication and associated deregulations are efficiently reduced by 5 µM Rupintrivir.

RSV-A apical replication and associated deregulations are efficiently reduced by 100 µM Ribavirin.

3. Fingerprints of hMPV or PIV3 infection (28 days)

hMPV fingerprint (28 days)				
Structure/ damage	TEER	No effect		
	Cytotoxicity	No effect		
Secretion	RANTES	No effect		
	IL-8	N/D		
C:l:a a4:a	CBF	↓ transient (D7-16)		
Cilia motion	MCC	N/D		

hMPV replication and associated deregulations are efficiently reduced by 30 µM Molnupiravir. Ribavirin (100 μM) is slightly less efficient. Nirmatrelvir (30 μM) has no effect.

PIV3 fingerprint (28 days)				
Structure/ damage	TEER	↓ D4-D28		
	Cytotoxicity	No effect		
Secretion	RANTES	No effect		
	IL-8	N/D		
C:::	CBF	No effect		
Cilia motion	MCC	No effect		

PIV3 replication is efficiently reduced by 30 µM Molnupiravir or Nirmatrelvir. Ribavirin (100 μM) is less efficient.

CONCLUSION AND SUMMARY

This set of data revealed a strain-specific fingerprint on standardized in vitro nasal epithelium (MucilAir™).

This *in vitro* assay allows ranking of antivirals efficacy and toxicity. It can be used as a screening platform for the development of new drugs through systemic or airborne delivery.

	Most efficient	Less efficient	Inefficient
H1N1	Baloxavir marboxil 1 μM	Oseltamivir 10 μM	Nirmatrelvir 30 μM
RV-A16	Rupintrivir 5 μM	_	_
RSV-A	Ribavirin 100 μM	_	–
hMPV	Molnupiravir 30 μM	Ribavirin 100 μM	Nirmatrelvir 30 μM
Molnupiravir 30 μM Nirmatrelvir 30 μM		Ribavirin 100 μM	-